Minimal fuzzy memberships and rules using hierarchical genetic algorithms

نویسندگان

  • Wallace Kit-Sang Tang
  • Kim-Fung Man
  • Zhi-Feng Liu
  • Sam Kwong
چکیده

A new scheme to obtain optimal fuzzy subsets and rules is proposed. The method is derived from the use of genetic algorithms, where the genes of the chromosome are classified into two different types. These genes can be arranged in a hierarchical form, where one type of genes controls the other type of genes. The effectiveness of this genetic formulation enables the fuzzy subsets and rules to be optimally reduced and, yet, the system performance is well maintained. In this paper, the details of formulation of the genetic structure are given. The required procedures for coding the fuzzy membership function and rules into the chromosome are also described. To justify this approach to fuzzy logic design, the proposed scheme is applied to control a constant water pressure pumping system. The obtained results, as well as the associated final fuzzy subsets, are included in this paper. Because of its simplicity, the method could lead to a potentially low-cost fuzzy logic implementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-objective Optimization of a Multi-product multi-period Fuzzy Possibilistic Capacitated Hub Covering Problem: NSGA-II and NRGA Solutions

The hub location problem is employed for many real applications, including delivery, airline and telecommunication systems and so on. This work investigates on hierarchical hub network in which a three-level network is developed. The central hubs are considered at the first level, at the second level, hubs are assumed which are allocated to central hubs and the remaining nodes are at the third ...

متن کامل

A New Learning Method for the Design of Hierarchical Fuzzy Controllers Using Messy Genetic Algorithms

An automatic design method for fuzzy controllers with a hierarchical prioritized structure is proposed. A messy genetic algorithm is used to learn di erent types of behaviour which are represented by a hierarchical set of fuzzy rules. We demonstrate that messy genetic algorithms are well suited to the task of learning because they allow a exible representation of the hierarchical prioritized st...

متن کامل

Rule based fuzzy classification using squashing functions

In this paper we are dealing with the construction of a fuzzy rule based classifier. A three-step method is proposed based on Lukasiewicz logic for the description of the rules and the fuzzy memberships to construct concise and highly comprehensible fuzzy rules. In our method, a genetic algorithm is applied to evolve the structure of the rules and then a gradient based optimization to fine tune...

متن کامل

An Adaptive Hierarchical Fuzzy Logic System for Modelling and Prediction of Financial Systems

In this thesis, an intelligent fuzzy logic system using genetic algorithms for the prediction and modelling of interest rates is developed. The proposed system uses a Hierarchical Fuzzy Logic system in which a genetic algorithm is used as a training method for learning the fuzzy rules knowledge bases. A fuzzy logic system is developed to model and predict three month quarterly interest rate flu...

متن کامل

Hierarchical genetic optimization of a fuzzy logic system for energy flows management in microgrids

Bio-inspired algorithms like Genetic Algorithms and Fuzzy Inference Systems (FIS) are nowadays widely adopted as hybrid techniques in commercial and industrial environment. In this paper we present an interesting application of the fuzzy-GA paradigm to Smart Grids. The main aim consists in performing decision making for power flow management tasks in the proposed microgrid model equipped by ren...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Industrial Electronics

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1998